Let f(x) be a function defined by f(x) = x - [x], 0 ≠ x ϵ R where [x] is the greatest integer less than or equal to x. Then the number of solutions of f(x)+f(1x)=1 are :
Infinite
Given f(x) = x - [x]. 0 ≠ x ϵ R.
f(x) + f(1x) = x - [x] + 1x−[1x]=1
⇒ x + 1x−1=[x]+[1x]
x2+1−xx = ( integer) k (Say).
∴ x2−(k+1)x+1=0
∵ x is real so (k+1)2 - 4 ≥ 0 [ b2−4ac≥0 ]
or k2−2k−3≥0 ⇒ (k+3)(k-1) ≥ 0
k ≤ -3 or k ≥ 1 .