Let f(x) be a function defined by f(x)=(4x−5,ifx≤2x−k,ifx>2 If
limx→2f(x)
exists, then the value of k is
Open in App
Solution
We have, f(x)=(4x−5,ifx≤2x−k,ifx>2 ∴limx→2−f(x)=limh→0f(2−h)=limh→04(2−h)−5=limh→03−4h=3andlimx→2+f(x)=limh→0f(2+h)=limh→0(2+h)−k=2−k∵limx→0f(x)existslimx→2−f(x)=limx→2+f(x)⇒3=2−kor,k=−1