Let f(x) be a function defined on(−a,a) with a>0. Amuse that f(x) is continuous at x=0 and limx→0f(x)−f(kx)x=α, where k∈(0,1) then compute f′(0+) and f′(0−), and comment upon the differentiablity of f at x=0? Denote α.
A
limx→of(x)−f(0)x⋅f(kx)−f(0)kx×k=α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→of(kx)−f(0)kx⋅f(kx)−f(0)kx×k=α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
limx→0f(x)−f(kx)x⋅f(kx)−f(0)kx×k=α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
limx→of(kx)−f(0)x⋅f(kx)−f(0)kx×k=α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Alimx→of(x)−f(0)x⋅f(kx)−f(0)kx×k=α limx→0−f(x)=limx→0+f(x) limx→0−f′(x)=limx→0+f′(x) f′(0=)=f′(0−) limx→0f(x)−f(kx)x=α ...(1) f′(0+)=limx→0f(x)−f(0)x f′(0−)=limx→0f(x)−f(0)−x From eqn (1) limx→0f(x)+f(0)−f(o)−f(kx)x limx→of(x)−f(0)x⋅f(kx)−f(0)kx×k=α