The correct option is B e−e22−32
As f(x)=f′(x) and f(0)=1
⇒ f′(x)f(x)=1
⇒ log(f(x))=x
⇒ f(x)=ex+k
⇒ f(x)=ex as f(0)=1
Now g(x)=x2−ex
∴ ∫10f(x)g(x)dx=∫10ex(x2−ex)dx
=∫10x2exdx−∫10e2xdx
=[(x2−2x+2)ex]10−(e2x2)10
=(e−2)−(e2−12)=e−e22−32
Using fnxexdx=ex[fn(x)−fn1(x)+fn2(x)+...+(−1)nfn(x)]
where f1, f2, ..., fn are derivatives of first, second , ...nth order.