Let f(x) be a function satisfying f′(x)=f(x) with f(0) = 1
and g(x) be the function satisfying f(x)+g(x)=x2
The value of integral ∫10f(x)g(x) dx is equal to [AIEEE 2003; DCE 2005]
None of these
We have f′(x)=f(x)⇒f′(x)f(x)=1
⇒log f(x)=x+log c⇒f(x)=cex
Since f(0)=1, therefore 1=ce0⇒c=1
Thus f(x)=ex
Hence g(x)=x2−ex
∴∫10f(x)g(x)dx=∫10ex(x2−ex)dx
=e−12e2−32