wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x) be a function such that f(x).f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)(1g(x)), then:

A
g(x)+g(1x)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
g(x)=1g(1x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
9k=1g(k10)=92
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
18k=1g(k19)=9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D g(x)=1g(1x)
Given 2g(x)=f(x)(1g(x))g(x)=f(x)2+f(x)
g(1x)=f(1x)2+f(1x)
g(x)+g(1x)=f(x)2+f(x)+f(1x)2+f(1x)=2f(x)+f(x)f(1x)+2f(1x)+f(x)f(1x)4+f(x)f(1x)+2f(x)+2f(1x)

=2f(x)+f(x+1x)+2f(1x)+f(x+1x)4+f(x+1x)+2f(x)+2f(1x)=2f(x)+2f(1)+2f(1x)4+f(1)+2f(x)+2f(1x)

=2f(x)+8+2f(1x)8+2f(x)+2f(1x)=1
g(x)+g(1x)=1g(x)=1g(1x)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon