limx→0f(x)x=1 As x→0f(x) shauld →0 for
f(x)x to be solvable.
Now let L=limx→0x(1+acosx)−bsinx(f(x))3
it is of 00 type,have applying l'opiter,
L=limx→0x(−asinx)+1+acosx−bcosx3(f(x))2f′(x)
As denominator →0, Numerator also →0
⇒1+a−b=0
f′(x) when x→0 =limx→0f(o+h)−f(0)h=limx→0f(h)h=1
Again applying l'opital,
L=limx→0−asinx−axcosx−asinx+bsinx6f(x)
Again, L=limx→0−acosx−acosx+axsinx−acosx+bcos6
As , L=1⇒−a−a−a+b=6⇒b−3a=6
As b=a+1 (From (1)) ⇒a+1−3a=6⇒2a=−5
⇒a=−5/2,b=−3/2→|a+b|=|−4|=4