limx→1f(x)x−1
f(x)+f′(x)+f′′(x)=x5+64
Let f(x)=x5+ax4+bx3+cx2+dx+e
f′(x)=5x4+4ax3+3bx2+2cx+d
f′′(x)=20x3+12ax2+6bx+2c
x5+(a+5)x4+(b+4a+20)x3+(c+3b+12a)x2+(d+2c+6b)x+e+d+2c=x5+64
⇒a+5=0
b+4a+20=0
c+3b+12a=0
d+2c+6b=0
e+d+2c=64
∴a=−5,b=0,c=60,d=−120,e=64
∴f(x)=x5−5x4+60x2−120x+64
Now, limx→1x5−5x4+60x2−120x+64x−1 is (00 from)
By L' Hopital rule
limx→15x4−20x3+120x−1201
=−15