The correct option is D 92
Let f(x)=ax4+bx3+cx2+dx+e
Given, limx→0(f(x)x2+1)=3
⇒limx→0(f(x)x2)=2
⇒limx→0(ax4+bx3+cx2+dx+ex2)=2
⇒limx→0(ax2+bx+c+dx+ex2)=2
The value of limit can be finite if d=0, e=0
Therefore, limx→0(ax2+bx+c)=2
⇒c=2
So, f(x)=ax4+bx3+2x2 ∵d=0,e=0,c=2
⇒f′(x)=4ax3+3bx2+4x
As f(x) has extreme values at x=1 and x=2 so, f′(1)=0, f′(2)=0
⇒f′(1)=4a+3b+4=0...(1)
⇒f′(2)=8a+3b+2=0...(2)
From equation (1) and (2)
a=12 and b=−2
Therefore, f(x)=12x4−2x3+2x2
⇒f(−1)=92