The correct option is
C 92Given it has extremum values at
x=1 and
x=2
⇒f′(1)=0 and f′(2)=0
Given f(x) is a fourth degree polynomial
Let f(x)=ax4+bx3+cx2+dx+c=0
Given limx→0(f(x)x2+1)=3
limx→0(ax4+bx3+cx2+dx+ex2+1)=3
limx→0(ax2+bx+c+dx+ex2+1)=3
For limit to have finite value (in this case 3) value of 'd' and 'e' must be 0
⇒d=0 & e=0
Substituting x=0 in limit ;
⇒ c+1=3
⇒ c=2
f′(x)=4ax3+3bx2+2cx+d
Applying f′(1)=0,f′(2)=0
4a(1)+3b(1)+2c(1)+d=0 ⇒ 1
4a(8)+3b(4)+2c(2)+d=0 ⇒ 2
Substituting c=2 and d=0
4a+3b+4=0
32a+12b+8=0
Solving two equations, we get a=12 and b=−2
f(−1)=−142−2(−1)3+2(−1)2
Hence f(x)=92
Therefore correct option is 'D'