The given limit exists only if f(x) will be as following:
f(x)=ax4+bx5+cx6
⇒limx→0(1+f(x)x3)1x=e2
⇒limx→0(1+ax+bx2+cx3)1x=e2
⇒limx→0(1+ax)1x=e2
⇒ea=e2
⇒a=2
Thus f(x)=2x4+bx5+cx6f′(x)=x3(8+5bx+6cx2)
Since f(x) has local extremum at x=0,1,2.
So, f′(0)=f′(1)=f′(2)=0
⇒c=23,b=−125
Hence f(x)=2x4−125x5+23x6
⇒f(3)=3245
⇒5f(3)4=81