The correct option is A x+C
Let f(x)=ax3+bx2+cx+d
Put x=0 and x=1
Then, we get f(0)=−1 and f(1)=0
d=−1 and a+b+c+d=0
a+b+c=1....(i)
It is given that x=0 is a stationary point of f(x), but it is not a point of extremum.
Therefore, f′(0)=0=f′(0) and f′′(0)=0
Now f(x)=ax3+bx2+cx+d
⇒f′(x)=3ax2+2bx+c,f′(x)=6ax+2b;f′′(x)=6a
f′(0),f′′(0)=0 amd f′′′(0)=0≠0
c=0,b=0 a≠0
From Eqs (i) and (ii) we get
a=1,b=c=0 and d=−1
Put these values in f(x)
we get f(x)=x3−1
Hence, ∫f(x)x3−1dx=∫x3−1x3−1dx=∫1dx=x+C