Let f(x) be a polynomial satisfying limit x tends to infinity x2f(x)(2x5+3)=6, also f(1)=3,f(3)=7 and f(5)=11, then find the value of [f(6)+5f(4)]29.
Step- 1: Determine f(x):
limx→∞x2f(x)(2x5+3)=6 is finite and non-zero. f(x) will be a polynomial of degree 3.
∴f(x)=λ(x-1)(x-3)(x-5)+2x+1
Now,
⇒limx→∞x2λ(x-1)(x-3)(x-5)+2x+1(2x5+3)=6⇒λ2=6⇒λ=12
f(x)=12(x-1)(x-3)(x-5)+2x+1
Step- 2:Find the value of [f(6)+5f(4)]29
f(6)=12[(5)(3)(1)]+12+1⇒=193andf(4)=12[(3)(1)(-1)]+9⇒=-27[f(6)+5f(4)]29=193+5(-27)29⇒=5829⇒=2
Hence, the value of [f(6)+5f(4)]29 is 2
Limit X tends to infinity
(X+C/X-C)^x=4
Then find C
Find the value of limit ( tn / et ) (t tends to infinity) and then prove that
-
∫ (tn / et ) dt = n factorial
limit of integration is from 0 to infinity