The correct option is B g(x)>0
Given, g(x)=f(x)+f′(x)+f′′(x) ....(1)
Let f(x)=ax2+bx+ca≠0
f′(x)=2ax+b
f′′(x)=2a
Substitute these values in (1)
g(x)=ax2+(2a+b)x+(c+b+2a) ....(2)
Since given, f(x)>0
⇒a>0 and D<0
or, a>0 and b2−4ac<0
Now, we will find D for g(x),
D=(2a+b)2−4a(c+b+2a)
⇒D=(b2−4ac)−4a2
⇒D<0(∵b2−4ac<0 and 4a2>0)
So, for g(x), a>0 and D<0
Hence, g(x)>0∀x