Suppose g(x)=∫f(x)x2(x+1)3dx ⋯(1)
g(x)=∫(Ax+Bx2+Cx+1+D(x+1)2+E(x+1)3)dx
=Alnx−Bx+Cln(1+x)−D1+x−E2(x+1)2+F, where F is an integration constant.
Since g(x) is a rational function, hence logarithmic functions must not be there.
⇒A=C=0
g(x)=∫(Bx2+D(x+1)2+E(x+1)3)dx ⋯(2)
Comparing numerator of (1) and (2),
f(x)=B(x+1)3+Dx2(x+1)+Ex2
⇒f(x)=(B+D)x3+(3B+D+E)x2+3Bx+B
Since f(x) is a quadratic equation, hence B+D=0
Also, f(0)=1 gives B=1
⇒D=−1
∴f(x)=(2+E)x2+3x+1
f′(x)=2(2+E)x+3
f′(0)=3