Let f(x)=(x−α)(x−β)
It is given that f(0)=p ⇒ αβ=p
and f(1)=13⇒(1−α)(1−β)=13 ...(1)
Now, let us assume that α is the common root of f(x)=0 add fofofof(x)=0
fofofof(x)=0
⇒ fofof(0)=0
⇒ fof(p)=0
So, f(p) is either α or β.
(p−α)(p−β)=α
(αβ−α)(αβ−β)=α⇒(β−1)(α−1)β=1 (∵ α≠0)
So, β=3 ... from eq.(1)
(1−α)(1−3)=13
α=76
f(x)=(x−76)(x−3)=25
f(−3)=(−3−76)(−3−3)=25