wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x) be a real value function not identically zero satisifes the equation,
f(x+yn)=f(x)+f(y)n for all real x,y and f(0)0 where n(>1) is an odd natural number. f(10)=10k.Find k value

Open in App
Solution

f(x+yn)=f(x)+(f(y))n
f(0+0)=f(0)+(f(0))n f(0)=0
also f(0)=limh0f(0+h)f(0)h=limh0f(h)h
Let I=f(0)=limh0f(0+(h1/n)n)f(0)(h1/n)n=limh0f((h1/n)n)(h1/n)n=limh0⎜ ⎜f(h1/n)h1/n⎟ ⎟n=1n
I=In or I=0,1,1
since f(0)0 and f(x) is not identically zero
So I=1 f(0)=1 ........(i)
Thus f(x)=limh0f(x+h)f(x)h=limh0f(x+(h1/n)n)f(x)(h1/n)n=limh0f(x+(h1/n)n)f(x)(h1/n)n=limh0f(x)+f(x+(h1/n)n)f(x)(h1/n)n
=limh0(f(h1/n)h1/n)n=(f(0))n
f(x)=1 ------(using (i))
Integrating both sides
f(x)=x+c
f(x)=x [f(0)=0]
f(10)=10
k=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon