f(x+yn)=f(x)+(f(y))n
f(0+0)=f(0)+(f(0))n ⇒f(0)=0
also f′(0)=limh→0f(0+h)−f(0)h=limh→0f(h)h
Let I=f′(0)=limh→0f(0+(h1/n)n)−f(0)(h1/n)n=limh→0f((h1/n)n)(h1/n)n=limh→0⎛⎜
⎜⎝f(h1/n)h1/n⎞⎟
⎟⎠n=1n
⇒I=In or I=0,1,−1
since f′(0)≥0 and f(x) is not identically zero
So I=1 ∴f′(0)=1 ........(i)
Thus f′(x)=limh→0f(x+h)−f(x)h=limh→0f(x+(h1/n)n)−f(x)(h1/n)n=limh→0f(x+(h1/n)n)−f(x)(h1/n)n=limh→0f(x)+f(x+(h1/n)n)−f(x)(h1/n)n
=limh→0(f(h1/n)h1/n)n=(f′(0))n
⇒f′(x)=1 ------(using (i))
Integrating both sides
f(x)=x+c
⇒f(x)=x [f(0)=0]
⇒f(10)=10
⇒k=1