The correct option is
D 5Here,
f(x+y2n+1)=f(x)+{f(y)}2n+1 .....(i)
Putting x=0,y=0, we get
f(0)=f(0)+{f(0)}2n+1⇒f(0)=0
f′(0)≥0 (given)
⇒limh→0f(x)−f(0)x−0≥0⇒limh→0f(x)x≥0
Now, if x>0⇒f(x)≥0 .....(ii)
Putting x=0,y=1 in Eq. (i),
f(1)=f(0)+{f(1)}2n+1 or f(1)[1−{f(1)}2n]=0
∴f(1)=0 or 1 [using Eq. (ii)]
Putting y=1 in Eq. (i), for all real x,
f(x+1)=f(x)+{f(1)}2n+1 .....(iii)
Now, two cases arise either f(1)=0 or 1
Case I If f(1)=0
⇒f(x+1)=f(x) [using Eq. (iii)]
⇒f(1)=f(2)=f(3)=....=0
∴f(x) is identically zero. (which is not possible)
Case II If f(1)=1
⇒f(x+1)=f(x)+1
∴f(2)=f1)+1=1+1=2
f(3)=f(2)+1=2+1=3
f(4)=f(3)+1=3+1=4
f(5)=f(4)+1=4+1=5
Proceeding in same way, we get
f(x)=x and f′(x)=1⇒f′(10)=1
Hence, f(5)=5 and f′(10)=1