Let f(x) be a real valued function defined on (-1,1) and e−xf(x)=2+∫x0√t4+dt. Then the value of f′(0) is
1
0
3
e−xf(x)=2+∫x0√t4+1dt
e−x(f′(x)−f(x))=√x4+1⟶f′(0)=3