Let f(x) be a real-valued function such that ∣∣f(x)+x2+1∣∣≥|f(x)|+∣∣x2+1∣∣ and f(x)≤0 for all real values of x. Then the absolute value of 5∑r=1(1+f(r)) is
Open in App
Solution
We know that |x+y|≤|x|+|y|,∀x,y∈R But given that |f(x)+(x2+1)|≥|f(x)|+|x2+1| ∴|f(x)+(x2+1)|≥|f(x)|+|x2+1| will be true iff f(x)⋅(x2+1)≥0 ⇒f(x)≥0 But f(x)≤0,∴f(x)=0 5∑r=1(1+f(r))=5∑r=11=5