Let f(x) be a twice-differentiable function and f′′(0)=2,
then evaluate limx→02f(x)−3f(2x)+f(4x)x2.
Open in App
Solution
Given f′′(0)=2 Consider limx→02f(x)−3f(2x)+f(4x)x2 Using L'Hospital's rule =limx→02f′(x)−6f′(2x)+4f′(4x)2x[asddxf(x)=f′(x),ddxf(2x)=f′(2x).2] Again, applying L'Hospital's rule, we get =limx→02f′′(x)−12f′′(2x)+16f′′(4x)2 On putting x=0, we get =f′′(0)−6f′′(0)+8f′′(0) =3f′′(0)=6