The correct options are
A n∑r=1f(xr)n>f⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠ C n∑r=1f−1(xr)n<f−1⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠The nature of the graph of
f(x) is shown,
So, the
n points form polygon, therefore centre of the polygon is,
(x1+x2+⋯+xnn,f(x1)+f(x2)+⋯+f(xn)n)=⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn,n∑r=1f(xr)n⎞⎟
⎟
⎟
⎟
⎟⎠ Correspondingly there will be a point on the curve,
⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn,n∑r=1f⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠⎞⎟
⎟
⎟
⎟
⎟⎠ This point will be below the centre of the polygon so the ordinate will follow the relation,
f⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠<n∑r=1f(xr)n Let
g(x)=f−1(x) f(g(x))=x⇒f′(g(x))g′(x)=1⇒g′(x)>0 [∵f′(g(x))>0] Now,
g′(x)=1f′(g(x))⇒g′′(x)=−1(f′(g(x)))2f′′(g(x))g′(x)⇒g′′(x)<0 The graph of
f−1(x) is,
So, the
n points form polygon, therefore centre of the polygon is,
(x1+x2+⋯+xnn,f−1(x1)+f−1(x2)+⋯+f−1(xn)n)=⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn,n∑r=1f−1(xr)n⎞⎟
⎟
⎟
⎟
⎟⎠ Correspondingly there will be a point on the curve,
⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn,n∑r=1f−1⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠⎞⎟
⎟
⎟
⎟
⎟⎠ This point will be above the centre of the polygon, so the ordinate will follow the relation,
n∑r=1f−1(xr)n<f−1⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠ Alternate Solution:
Let
f(x)=ex f′(x)=ex, f′(x)>0 f′′(x)=ex, f′′(x)>0 f⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠=e(∑xi)/n n∑r=1f(xr)n=ex1+ex2+ex3+...+exnn Using
AM-GM inequality,
ex1+ex2+ex3+...+exnn>e(∑xi)/n ⇒n∑r=1f(xr)n>f⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠ ...(1) Now, inverse of
ex is
lnx i.e.,
f−1(x)=lnx Since,
lnx is increasing function with decreasing slope, therefore if we take inverse of eqn
(1), then the inquality sign will change. Hence, we obtained
n∑r=1f−1(xr)n<f−1⎛⎜
⎜
⎜
⎜
⎜⎝n∑r=1xrn⎞⎟
⎟
⎟
⎟
⎟⎠