wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x) be an invertible function such that f(x)>0 and f′′(x)>0 for all xR, then which of the following is/are correct ?
(where x1,x2,,xn are different points)

A
nr=1f(xr)n>f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
nr=1f(xr)n<f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nr=1f1(xr)n<f1⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
nr=1f1(xr)n>f1⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A nr=1f(xr)n>f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟
C nr=1f1(xr)n<f1⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟
The nature of the graph of f(x) is shown,


So, the n points form polygon, therefore centre of the polygon is,
(x1+x2++xnn,f(x1)+f(x2)++f(xn)n)=⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn,nr=1f(xr)n⎟ ⎟ ⎟ ⎟ ⎟
Correspondingly there will be a point on the curve,
⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn,nr=1f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟ ⎟
This point will be below the centre of the polygon so the ordinate will follow the relation,
f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟<nr=1f(xr)n


Let g(x)=f1(x)
f(g(x))=xf(g(x))g(x)=1g(x)>0 [f(g(x))>0]

Now,
g(x)=1f(g(x))g′′(x)=1(f(g(x)))2f′′(g(x))g(x)g′′(x)<0
The graph of f1(x) is,


So, the n points form polygon, therefore centre of the polygon is,
(x1+x2++xnn,f1(x1)+f1(x2)++f1(xn)n)=⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn,nr=1f1(xr)n⎟ ⎟ ⎟ ⎟ ⎟
Correspondingly there will be a point on the curve,
⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn,nr=1f1⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟ ⎟
This point will be above the centre of the polygon, so the ordinate will follow the relation,
nr=1f1(xr)n<f1⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟

Alternate Solution:
Let f(x)=ex
f(x)=ex, f(x)>0
f′′(x)=ex, f′′(x)>0
f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟=e(xi)/n
nr=1f(xr)n=ex1+ex2+ex3+...+exnn

Using AM-GM inequality,
ex1+ex2+ex3+...+exnn>e(xi)/n

nr=1f(xr)n>f⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟ ...(1)

Now, inverse of ex is lnx i.e., f1(x)=lnx
Since, lnx is increasing function with decreasing slope, therefore if we take inverse of eqn (1), then the inquality sign will change. Hence, we obtained
nr=1f1(xr)n<f1⎜ ⎜ ⎜ ⎜ ⎜nr=1xrn⎟ ⎟ ⎟ ⎟ ⎟


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Convexity and Concavity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon