The correct option is D g(2n)=0 ∀n∈N
It is given that f(x) is an odd function. Therefore,
g(x)=∫x0f(t)dt is an even function.
⇒g(x+2)=∫x+20f(t)dt⇒g(x+2)=∫20f(t)dt+∫x+22f(t)dt
⇒g(x+2)=g(2)+∫x0f(t)dt [∵ f(x) is periodic with period 2]
⇒g(x+2)=g(2)+g(x) for all x ... (i)
Now,g(x+2)=g(2)+g(x) ⇒g(1)=g(2)+g(−1) [Replacing x by - i]
⇒g(2)=g(1)−g(−1) ⇒g(2)=∫10f(t)dt−∫−10f(t)dt
⇒g(2)=∫10f(t)dt+∫0−1f(t)dt
⇒g(2)=∫1−1f(t)dt
⇒g(2)=0 [∵f is an odd function]
Substituting g(2)=0in(i), we get
g(x+2)=g(x) for all x ⇒g(x) is periodic with period 2 units
Also, g(x+2)=g(x) for all x
⇒g(2)=g(4)=g(6)=.....=g(2n)
⇒g(2n)=0 for all n ∈ N