1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Existence of Limit
Let f”x be ...
Question
Let
f
′′
(
x
)
be continuous at
x
=
0
.
If
lim
x
→
0
2
f
(
x
)
−
3
a
f
(
2
x
)
+
b
f
(
8
x
)
sin
2
x
exists and
f
(
0
)
≠
0
,
f
′
(
0
)
≠
0
,
then the value of
3
a
b
is ?
A
7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
7
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
D
7
lim
x
→
0
2
f
(
x
)
−
3
a
f
(
2
x
)
+
b
f
(
8
x
)
sin
2
x
=
(
2
−
3
a
+
b
)
f
(
0
)
0
but given limit exists
⇒
(
2
−
3
a
+
b
)
f
(
0
)
=
0
but
f
(
0
)
≠
0
⇒
2
−
3
a
+
b
=
0
→
1
So now it is in
0
0
form
lim
x
→
0
2
f
′
(
x
)
−
3
a
f
′
(
2
x
)
×
2
+
b
f
′
(
8
x
)
×
8
2
sin
x
cos
x
=
(
2
−
6
a
+
8
b
)
f
′
(
0
)
0
but again limit exists
⇒
2
−
6
a
+
8
b
=
0
→
2
lim
x
→
0
2
f
′′
(
x
)
−
6
a
f
′′
(
2
x
)
×
2
+
8
b
f
′′
(
8
x
)
×
8
2
cos
2
x
=
2
−
12
a
+
64
b
2
×
f
′′
(
0
)
From
1
and
2
3
a
=
7
b
⇒
3
a
b
=
7
Suggest Corrections
0
Similar questions
Q.
If
f
n
(
x
)
be continuous at
x
=
0
,
f
(
0
)
≠
0
,
f
′
(
0
)
≠
0
and
lim
x
→
0
2
f
(
x
)
−
3
a
f
(
2
x
)
+
b
f
(
8
x
)
sin
2
x
exists. Then the values of
a
and
b
are
Q.
If
f
n
(
x
)
be continuous at
x
=
0
,
f
(
0
)
≠
0
,
f
′
(
0
)
≠
0
and
lim
x
→
0
2
f
(
x
)
−
3
a
f
(
2
x
)
+
b
f
(
8
x
)
sin
2
x
,exists then values of
a
and
b
are
Q.
Let
f
′′
(
x
)
be continous at
x
=
0
.
If
lim
x
→
0
2
f
(
x
)
−
3
a
f
(
2
x
)
+
b
f
(
8
x
)
sin
2
x
exists and
f
(
0
)
≠
0
,
f
′
(
0
)
≠
0
, then
Q.
Let
f
"
(
x
)
be continuous at
x
=
0
and
f
"
(
0
)
=
4
.
Then
lim
x
→
0
2
f
(
x
)
−
3
f
(
2
x
)
+
f
(
4
x
)
x
2
is equal to?
Q.
Let the function,
f
:
[
−
7
,
0
]
→
R
be continuous on
[
−
7
,
0
]
and differentiable on
(
−
7
,
0
)
. If
f
(
−
7
)
=
−
3
and
f
′
(
x
)
≤
2
,
for all
x
∈
(
−
7
,
0
)
,
then for all such functions
f
,
f
(
−
1
)
+
f
(
0
)
lies in the interval:
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Introduction to Limits
MATHEMATICS
Watch in App
Explore more
Existence of Limit
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app