Let f(x) be periodic and k be a positive real number such that f(x+k)+f(x)=0 for all x∈R. If the period of f(x) is ak. Find a
Open in App
Solution
We have,f(x+k)+f(x)=0,∀x∈R ⇒f(x+k)=−f(x),∀x∈R, put x=x+k ⇒f(x+2k)=−f(x+k),∀x∈R [as f(x+k)=−f(x)] ⇒f(x+2k)=f(x),∀x∈R which clearly shows that f(x) is periodic with period 2k. a=2