F(x)=∫f(x)dx=∫13+5sinx+3cosxdx
Substituting u=tanx2⇒du=12sec2x2dx
sinx=2uu2+1,cosx=1−u2u2+1,dx=2du1−u2F(x)=∫15u+3du=log(5u+3)5+c=log(5tanx2+3)5+c
As is passes through (0,0)
F(0)=0⇒log(3)5+c=0⇒c=−log(3)5
Then
F(π2)=log(5tanπ4+3)5−log(3)5=15log83
Therefore, F(π2)−15log83+1982=1982