The correct options are
A f(0)+f(2)=2f(c), for atlease one c,c ϵ (0,2)
C f(0)+f(2)>2f(1)
D 2f(0)+f(2)>3f(23)
f"(x)>0∀xϵ[0,2]
⇒ f' (x) is increasing function
⇒f′(c1)=f(1)−f(0)1−0,c1ϵ(0,1)
f′(c2)=f(2)−f(1)2−1,c2ϵ(1,2)
∴f′(c1)<f′(c2)⇒f(0)+f(2)>2f(1)
similarly applying LMVT between
[0,23]and[23,2]; we get
f(2)−f(23)43>f(23)−f(0)23
⇒2f(0)+f(2)>3f(23)
f(0)+f(2)=2f(c), for atlease one c,c ϵ (0,2) By intermediate Value Theorem