The correct options are
A limx→0+f(x)=1
C cot−1(limx→0−f(x))2=1
We have RHL=limx→0+f(x)=limx→0+tan2{x}(x2−[x]2)
=limx→0+tan2xx2=1
(∵x→0+,[x]=0⇒{x}=x)
Also, LHL=limx→0−f(x)=limx→0√{x}cot{x}=√cot1
(∵x→0−,[x]=−1⇒{x}=x+1⇒{x}→1)
Here, LHL≠RHL
So, limit of f(x) does not exist.
Also, cot−1(limx→0−f(x))2=cot−1(cot1)=1