wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)={k+x2,x<2(x2)2+3,x2. Then which of the following statements is/are CORRECT?

A
If f(x) is continuous at x=2, then k=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
If f(x) is differentiable at x=2, then k=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x) is not differentiable at x=2, for any real value of k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
If k>3, then the least value of f(x) occurs at x=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D If k>3, then the least value of f(x) occurs at x=2
f(x)={k+x2,x<2(x2)2+3,x2

limx2f(x)=limx2(k+x2)=k+4limx2+f(x)=limx2+((x2)2+3)=3
For being continuous at x=2,
3=k+4
k=1

f(x)={2x,x<22(x2),x2

f(2)=4f(2+)=0
Clearly, f is not differentiable for any real of value of k.


From above graph, clearly for k>3, least value of f(x) occurs at x=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Discontinuity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon