f(x)=⎧⎪
⎪⎨⎪
⎪⎩(1+|sinx|)a|sinx|,−x6<x<0b,x=0etan 2x / tan 3x,0<x<−π6
For f(x) to be continuous at x = 0
limx→0−f(x)=f(0)=limx→0+f(x)
limx→0−(1+|sinx|)a|sin x|=elimx→0(|sin x|a|sin x|)=ea.
Now,limx→0+etan 2xtan 3x=c limx→0+.e(tan 2x2x×2x) / (tan 3x3x×3x)
=limx→0+e23=e23