Let f(x)={x2+k,whenx≥0−x2−k,whenx<0. If the function f(x) be continous at x=0, then k=
We have,
x2+kwhen,x≥0
−x2−kwhen,x≤0
Given that,
L.H.L=R.H.L=f(x)
At point x=0
x2+k=−x2−k=0
⇒x2+k=0
⇒k=−x2
⇒k=0
Hence, this is the answer.