The correct option is C 3
f(x)=⎧⎪
⎪⎨⎪
⎪⎩[x];−2≤x≤−122x2−1;−12<x≤2
f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩−2;−2≤x≤−1−1;−1≤x≤−122x2−1;−12<x≤2
|f(x)|=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩2;−2≤x≤−11;−1≤x≤−12|2x2−1|;−12<x≤2
|f(x)|=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩2;−2≤x≤−11;−1≤x≤−121−2x2;−12<x≤1√22x2−1;1√2<x≤2
f(|x|)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩−2;−2≤|x|≤−1−1;−1≤|x|≤−122|x|2−1;−12<x≤2
Hence,
f(|x|)=2x2−1; −2≤x≤2
Now, g(x)=|f(x)|+f(|x|)
g(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩2x2+1;−2≤x<−12x2;−1≤x≤−120;−12<x<1√24x2−2;1√2≤x≤2
g(−1−)=limx→−1(2x2+1)=3 and g(−1+)=limx→−12x2=2
g(−12−)=limx→−12(2x2)=12 and g(−12+)=limx→−120=0
g(1√2−)=limx→1√20=0 and g(1√2+)=limx→1√2(4x2−2)=0
Hence, g(x) is discontinuous at x=−1, −12
⇒g(x) is non-differentiable at x=−1, −12
Now, g′(1√2−)=0, g′(1√2+)=8√2
Hence, g(x) is non-differentiable at x=1√2