Let, f(x)={[x],−2≤x≤−1|x|+1,−1<x≤2 and g(x)={[x],−π≤x≤0sinx,0<x≤π, then the number of integral points in the range of g(f(x)) is
Open in App
Solution
g(f(x))={[f(x)],−π≤f(x)≤0sinf(x),0<f(x)≤π
Now, from graph of f(x)
f(x)∈[−π,0]⇒x∈[−2,−1] f(x)∈(0,π]⇒x∈(−1,2] ∴g(f(x))={[f(x)],x∈[−2,−1]sinf(x),x∈(−1,2] =⎧⎨⎩−2,x∈[−2,−1)−1,x=−1sin(|x|+1),x∈(−1,2] ∴Range of g(f(x))={−2,−1}∪[sin1,sin3] (∵∀x∈(−1,2],|x|+1∈[1,3])
No. of integers in [sin1,sin3] is 1 ie. sinπ2 ∴ Total number of integers in the range {–2,–1,1} is 3