Given : f(x)={x+e2x−1, x<0x2+2λx, x≥0
R.H.D.=f′(0+)=limh→0f(0+h)−f(0)h
=limh→0h2+2λh−0h
⇒f′(0+)=2λ
L.H.D.=f′(0−)=limh→0f(0−h)−f(0)−h
=limh→0(−h+e−2h−1)−0−h (00)form
By L'Hospital's rule,
f′(0−)=limh→0−2e−2h−1−1
⇒f′(0−)=3
Since f(x) is differentiable at x=0,
⇒L.H.D.=R.H.D.
∴ 2λ=3