wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=∣ ∣cosxx12sinxx2xsinxxx∣ ∣ then, evaluate: limx0f(x)x2

Open in App
Solution

f(x)=∣ ∣cosxx12sinxx2xsinxxx∣ ∣
C2C2x
f(x)=x∣ ∣cosx112sinx12xsinx1x∣ ∣
R2R2R3
f(x)=x∣ ∣cosx11sinx0xsinx1x∣ ∣
x[cosx(0x)1(xsinxxsinx)+1(sinx0)]
x[xcosx+sinx]=x2cosx+xsinx
f(x)x2=x2cosx+xsinxx2=cosx+sinxx
limx0f(x)x2=limx0(cosx+sinxx)
limx0f(x)x2=1+1=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon