Let F(x)=∣∣
∣∣f′g′h′f′′g′′h′′f′′′g′′′h′′′∣∣
∣∣
Differentiating both sides w.r.t. x
F′(x)=∣∣
∣∣f′′g′′h′′f′′g′′h′′f′′′g′′′h′′′∣∣
∣∣+∣∣
∣∣f′g′h′f′′′g′′′h′′′f′′′g′′′h′′′∣∣
∣∣+∣∣
∣∣f′g′h′f′′g′′h′′f′′′′g′′′′h′′′′∣∣
∣∣
If any two rows or any two columns in a determinant are identical (or proportional), then the value of the determinant is zero.
∵f,g,h are of degree 3
⇒f′′′′, g′′′′, h′′′′=0
∴F′(x)=0
Hence, the degree of F′(x) is 0.