wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let F(x)=∣ ∣fghf′′g′′h′′f′′′g′′′h′′′∣ ∣. If f(x),g(x) and h(x) are the polynomials in x of degree 3, then degree of F(x) is

Open in App
Solution

Let F(x)=∣ ∣fghf′′g′′h′′f′′′g′′′h′′′∣ ∣
Differentiating both sides w.r.t. x
F(x)=∣ ∣f′′g′′h′′f′′g′′h′′f′′′g′′′h′′′∣ ∣+∣ ∣fghf′′′g′′′h′′′f′′′g′′′h′′′∣ ∣+∣ ∣fghf′′g′′h′′f′′′′g′′′′h′′′′∣ ∣
If any two rows or any two columns in a determinant are identical (or proportional), then the value of the determinant is zero.
f,g,h are of degree 3
f′′′′, g′′′′, h′′′′=0
F(x)=0
Hence, the degree of F(x) is 0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon