Let f(x)=∣∣ ∣ ∣∣ω3ω4ω5sin(m−1)xsinmxsin(m+1)xcos(m−1)xcosmxcos(m+1)x∣∣ ∣ ∣∣, where m∈N and ω is the cube root of unity. If π/2∫0f(x)dx=aω+bω2, then (a,b)=
If ω is a complex cube root of unity, then the value of a+bω+cω2c+aω+bω2 + a+bω+cω2b+cω+bω2 is :