The correct option is D Range of f(x)={ 2k:k∈Z−{−1,0,1}}
f(x)=cos(cos−1(2[x]−1))
For f(x) to be defined,
−1≤2[x]−1≤1⇒2[x]−1+1≥0 and 2[x]−1−1≤0⇒[x]+1[x]−1≥0 and −[x]−3[x]−1≤0⇒[x]+1[x]−1≥0 and [x]−3[x]−1≥0⇒[x]∈(−∞,−1]∪[3,∞)⇒x∈(−∞,0)∪[3,∞)
∴ Domain of f(x) excludes 3 integral values i.e. {0,1,2}
Now,
f(x)=cos(cos−12[x]−1)
⇒y=2[x]−1
As [x]∈Z−{0,1,2}
⇒[x]−1∈Z−{−1,0,1}
∴ Range of f(x) is
{ 2k:k∈Z−{−1,0,1}}