Let
f(x)=cosx(sinx+√sin2x+sin2θ),
θ is a given constant,
then max value of f(x)is
Given that
f(x)=cosx(sinx+√sin2x+sin2θ)f(x)=1secx(sinx+√sin2x+sin2θ)⇒secx.f(x)=sinx+√sin2+sin2θ⇒secx.f(x)−sinx=√sin2+sin2θ⇒(secx.f(x)−sinx)2=sin2x+sin2θ⇒sec2xf2(x)+sin2x−2sinxsecxf(x)=sin2x+sin2θ⇒f2(x)[1+tan2x]−2f(x)tanx=sin2θ⇒f2(x)tan2x−2f(x)tanx+f2(x)−sin2θ=0because values of tanx are real and it is represented by a quadratic equationSo Discriminant D of this should be D≥0⇒4f2(x)−4f2(x)(f2(x)−sin2θ)≥0⇒4f2(x)−4f4(x)+4f2(x)sin2θ≥0⇒4f4(x)−4f2(x)sin2θ−4f2(x)≤0⇒4f2(x)(f2(x)−sin2θ−1)≤0So⇒(f2(x)−sin2θ−1)≤0⇒f2(x)≤1+sin2θ⇒|f(x)|≥√1+sin2θ
So max value of f(x) is=√1+sin2θ