wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let
f(x)=cosx(sinx+sin2x+sin2θ),
θ is a given constant,
then max value of f(x)is


Open in App
Solution

Given that
f(x)=cosx(sinx+sin2x+sin2θ)f(x)=1secx(sinx+sin2x+sin2θ)secx.f(x)=sinx+sin2+sin2θsecx.f(x)sinx=sin2+sin2θ(secx.f(x)sinx)2=sin2x+sin2θsec2xf2(x)+sin2x2sinxsecxf(x)=sin2x+sin2θf2(x)[1+tan2x]2f(x)tanx=sin2θf2(x)tan2x2f(x)tanx+f2(x)sin2θ=0because values of tanx are real and it is represented by a quadratic equationSo Discriminant D of this should be D04f2(x)4f2(x)(f2(x)sin2θ)04f2(x)4f4(x)+4f2(x)sin2θ04f4(x)4f2(x)sin2θ4f2(x)04f2(x)(f2(x)sin2θ1)0So(f2(x)sin2θ1)0f2(x)1+sin2θ|f(x)|1+sin2θ

So max value of f(x) is=1+sin2θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon