Let f(x)=cosx(sinx+√sin2x+sin2θ),θ is a given const, then max of f(x)is
√1+sin2θ
f(x)=cosx(sinx+√sin2x+sin2θ)f(x)=1secx(sinx+√sin2x+sin2θ)⇒secxf(x)=sinx+√sin2+sin2θ⇒(secxf(x)−sinx)2=sin2x+sin2θ=sec2xf2(x)+sin2x−2sinxsecxf(x)=sin2x+sin2θ=f2(x)[1+tan2x]−2f(x)tanx=sin2θ=f2(x)tan2x−2f(x)tanx+f2(x)−sin2θ=0⇒4f2(x)≥4f2(x)(f2(x)−sin2θ)=f2(x)≤1+sin2θ⇒|f(x)|≥√1+sin2θ