The correct option is D f′(0+) is equal to zero
f(x)=⎧⎨⎩11+e1/x,x≠00,x=0
LHD=f′(0−)=limh→0f(0−h)−f(0)−h
=limh→011+e−1/h−h →−∞
RHD=f′(0+)=limh→0f(h)−f(0)h
=limh→011+e1/hh
=limh→01/h1+e1/h
=limh→0−1h2e1/h(−1h2)=0
f(0+)=limh→011+e1/h=0
f(0−)=limh→011+e−1/h=1