The correct options are
B Minimum value of f(x) is 136
C Maximum value of g(x) occurs at x=π3
D Sum of the minimum values of f(x) and g(x) is −7136
f(x)=1(cosx−3)2+(sinx+4)2
=1cos2x−6cosx+9+sin2x+8sinx+16
=18sinx−6cosx+26
Extreme values of 8sinx−6cosx+26 are 26±√(8)2+(−6)2=26±10=36,16
∴fmax=116 and fmin=136
g(x)=√3sinx+cosx=2(√32sinx+12cosx)
g(x)=2sin(x+π6)
∴gmax occurs at x=π3 and gmin=−2
Sum of minimum values of f(x) and g(x) is 136+(−2)=−7136