Let f′(x)=192x32+sin4πx,∀x∈R and f(12)=0. If m≤1∫1/2f(x)dx≤M, then the values of m and M are
A
m=1.3,M=2.4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
m=0.25,M=4.5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
m=2.6,M=3.9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
m=1,M=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cm=2.6,M=3.9 Given: f′(x)=192x32+sin4πx
We know 0≤sin4πx≤1⇒2≤2+sin4πx≤3⇒13≤12+sin4πx≤12⇒192x33≤f′(x)≤192x32⇒64x3≤f′(x)≤96x3⇒x∫1/264x3dx≤x∫1/2f′(x)dx≤x∫1/296x3dx⇒16[x4−116]≤f(x)−0≤24[x4−116]⇒16x4−1≤f(x)≤24x4−32
Now, again integrating, we get 1∫1/2(16x4−1)dx≤1∫1/2f(x)dx≤1∫1/2(24x4−32)dx⇒[16x55−x]11/2≤1∫1/2f(x)dx≤[24x55−3x2]11/2⇒2610≤1∫1/2f(x)dx≤3910∴m=2.6,M=3.9