Let f′(x)=192x32+sin4πx for all x∈R with f(12)=0. If m≤1∫12f(x)dx≤M, then the possible values of m and M are
A
m=13,M=24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
m=14,M=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
m=−11,M=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
m=1,M=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dm=1,M=12 As x∈(12,0)⇒12≤x≤1 ∴8≤f′(x)≤96x∫128dx≤x∫12f′(x)dx≤x∫1296dx (8x−4)≤f(x)≤(96x−48)1∫12(8x−4)dx≤1∫12f(x)dx≤1∫12(96x−48)dx [4x2−4x]112≤1∫12f(x)dx≤[48x2−48x]112 1≤1∫12f(x)dx≤12 m=1,M=12