Let f(x)=(27−2x)1/3−39−3(243+5x)1/5,x≠0. If f(x) is continuous at x=0, then the value of f(0) is
Open in App
Solution
For continuity of f(x) at x=0, we must have: f(0)=limx→0f(x) =limx→0(27−2x)1/3−39−3(243+5x)1/5[00form] =limx→013(27−2x)−2/3⋅(−2)−35(243+5x)−4/5⋅5 =29limx→0(243+5x)4/5(27−2x)2/3 =29⋅(243)4/5(27)2/3=29⋅819=2