Using expansion of sin(3x),sin(5x),sin(x),we get
limx→0[3x1!−(3x)33!+(3x)55!⋯]+A[5x1!−(5x)33!+(5x)55!⋯]+B[x1!−x33!+x55!⋯]x5
For limit to exist,
coefficient of x=0 and coefficient of x3=0
3+5A+B=0 and 92+125A6+B6=0
Solving, we get A=−15;B=−2
∴f(0)=C= coefficient of x5=−165
Hence, AB+CA=14