The correct option is B even function
f(0)=sin0[0π]+12=0
Now putting x→−x
f(−x)=sin(−x)[−xπ]+12
Now we know that, when xπ is not an integer
[−xπ]+[xπ]=−1
Using this we can write,
f(−x)=−sin(x)−[xπ]−1+12⇒f(−x)=sinx[xπ]+12=f(x)
When xπ is an integer,
xπ=n⇒x=nπ
So the function will be,
f(nπ)=sin(nπ)n+12=0
So, the given function is even