wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let F(x)=dx(x2+1)(x2+9) and F(0)=0, if F(3)=536k, then find the value of k.

Open in App
Solution

F(x)=dx(x2+1)(x2+9)

F(x)=188dx(x2+1)(x2+9)

F(x)=18[(x2+9)(x2+1)(x2+1)(x2+9)]dx

F(x)=18[x2+9(x2+1)(x2+9)x2+1(x2+1)(x2+9)]dx

F(x)=18dxx2+1dxx2+9

F(x)=18[tan1x13tan1(x3)]+C

Given F(0)=0

F(0)=18[tan1(0)13tan1(03)]+C

0=0+C

C=0

F(x)=18[tan1(x)13tan1(x3)]

F(3)=18[tan1(3)13tan1(33)]

F(3)=18[π3π18]

F(3)=π24[ππ6]

F(3)=5π144π

5K36=5π144π (F(3)=5K36Given)

K=36π144

K=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon