Let f(x)=∫√x(1+x)2dx(x≥0). Then f(3)−f(1) is equal to
A
−π6+12+√34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π6+12−√34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−π12+12+√34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π12+12−√34
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dπ12+12−√34 ∫√x(1+x)2dx
Put √x=tant ⇒dx=2(tant)(sec2t)dt ∴∫(tant)(2tant)(sec2t)dtsec4t =∫sin2tdt =∫(1−cos2t)dt =t−sin2t2+C
At x=3⇒t=π3
At x=1⇒t=π4
Now, f(3)−f(1)=(π3−√34)−(π4−12) ∴f(3)−f(1)=π12+12−√34