wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=x(1+x)2dx ;(x0). Then f(3)f(1) is equal to

Open in App
Solution

Given:
f(x)=x(1+x)2dx
Put x=tan2θ
dx=2tanθsec2θdθ
f(θ)=2tan2θ.sec2θsec4θd θ
f(θ)=2sin2θ d θ
f(θ)=θsin 2θ2+C
f(θ)=θ12×2tanθ1+tan2θ+C
f(θ)=θtanθ1+tan2θ+C
f(x)=tan1xx1+x+C
Now,
f(3)f(1)=tan1(3)31+3tan1(1)+12
f(3)f(1)=π12+1234

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon